Assessing the impact of water scarcity on thermoelectric and hydroelectric potential and electricity price under climate change: Implications for future energy management
This study investigates the impact of water resource restrictions on thermoelectric and hydroelectric stations, analyzing its influence on demand and electricity prices. It uses General Circulation Models (GCMs) and Soil and Water Assessment Tools (SWAT) to forecast future temperature trends and est...
Gespeichert in:
Veröffentlicht in: | Heliyon 2024-09, Vol.10 (17), p.e36870, Article e36870 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | This study investigates the impact of water resource restrictions on thermoelectric and hydroelectric stations, analyzing its influence on demand and electricity prices. It uses General Circulation Models (GCMs) and Soil and Water Assessment Tools (SWAT) to forecast future temperature trends and estimate river flow patterns. The research provides insights into climate change's potential effects on water resources and electricity potential. The study shows a significant decrease in river flow, indicating potential issues with hydroelectric and thermoelectric systems. The study also uses an optimized Echo State Network (ESN) for accurate electricity demand, using the Modified Snow Leopard Optimization (MSLO) algorithm as a new metaheuristic model. The simulation results show a consistent increase in electricity demand scenarios, which is expected to lead to higher supply prices due to decreased production capacity. This could have significant economic effects. The investigation provides a comprehensive understanding of water resource management challenges in power production, aiding in informed decisions in the future energy industry. |
---|---|
ISSN: | 2405-8440 2405-8440 |
DOI: | 10.1016/j.heliyon.2024.e36870 |