Complexes of Zinc-Coordinated Heteroaromatic N-Oxides with Pyrene: Lewis Acid Effects on the Multicenter Donor-Acceptor Bonding

4-Nitroquinoline-N-oxide (NQO) and 4-nitropyridine-N-oxide (NPO) are important precursors for the synthesis of substituted heterocycles while NQO is a popular model mutagen and carcinogen broadly used in cancer research; intermolecular interactions are critical for their reactions or functioning in...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Molecules (Basel, Switzerland) Switzerland), 2024-07, Vol.29 (14), p.3305
Hauptverfasser: Nizhnik, Yakov P, Hansen, Erin, Howard, Cayden, Zeller, Matthias, Rosokha, Sergiy V
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:4-Nitroquinoline-N-oxide (NQO) and 4-nitropyridine-N-oxide (NPO) are important precursors for the synthesis of substituted heterocycles while NQO is a popular model mutagen and carcinogen broadly used in cancer research; intermolecular interactions are critical for their reactions or functioning in vivo. Herein, the effects of the coordination of N-oxide's oxygen atom to Lewis acids on multicenter donor-acceptor bonding were explored via a combination of experimental and computational studies of the complexes of NQO and NPO with a typical π-electron donor, pyrene. Coordination with ZnCl increased the positive electrostatic potentials on the surfaces of these π-acceptors and lowered the energy of their LUMO. Analogous effects were observed upon the protonation of the N-oxides' oxygen or bonding with boron trifluoride. The interaction of ZnCl , NPO, or NQO and pyrene resulted in the formation of dark co-crystals comprising π-stacked Zn-coordinated N-oxides and pyrene similar to that found with protonated or (reported earlier) BF -bonded N-oxides. Computational studies indicated that the coordination of N-oxides to zinc(II), BF , or protonation led to the strengthening of the multicenter bonding of the nitro-heterocycle with pyrene, and this effect was related both to the increased electrostatic attraction and molecular-orbital interactions in their complexes.
ISSN:1420-3049
1420-3049
DOI:10.3390/molecules29143305