Analysis of unmanned aerial vehicle communication performance with optic sensor integration

This paper presents a novel algorithmic framework to enhance unmanned aerial vehicle (UAV) communication performance through the adaptive integration of optical sensor data. The framework features a dynamic sensor integration algorithm (DSIA) that optimizes sensor bitrates based on real-time bandwid...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Measurement. Sensors 2024-06, Vol.33, p.101183, Article 101183
Hauptverfasser: Ramasamy, Viswanathan, Durairaj, M., Ahmed, Syed Arfath, Raja, A. Wasim, Aeron, Anurag, Muthukumar, B.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This paper presents a novel algorithmic framework to enhance unmanned aerial vehicle (UAV) communication performance through the adaptive integration of optical sensor data. The framework features a dynamic sensor integration algorithm (DSIA) that optimizes sensor bitrates based on real-time bandwidth availability and mission-driven priorities. An adaptive compression scheme works alongside the DSIA to maintain high data fidelity and resolution at lower bitrates. Together, these algorithms provide an efficient and scalable solution for managing high-volume UAV sensor data under varying conditions. The efficiency gains are demonstrated through simulations highlighting the framework’s ability to reduce packet loss and latency while maximizing image quality for a given communication bandwidth constraint. The scalable architecture ensures robustness across diverse UAV platforms, sensor types, and operational scenarios. Simulation results validate up to a 75 % reduction in latency and a 45 % improvement in image resolution compared to conventional fixed bitrate approaches. By optimizing sensor data relevancy and transmission fidelity, this framework enables more effective UAV communication and enhances mission performance.
ISSN:2665-9174
2665-9174
DOI:10.1016/j.measen.2024.101183