Polystyrene nanoplastics at predicted environmental concentrations enhance the toxicity of copper on Caenorhabditis elegans

Excessive nanoplastics not only pose a direct threat to the environment but also have the propensity to adsorb and interact with other pollutants, exacerbating their impact. The coexistence of nanoplastics and heavy metals in soils is a prevalent phenomenon. However, limited research existed about t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Ecotoxicology and environmental safety 2024-09, Vol.282, p.116749, Article 116749
Hauptverfasser: Zhu, Jinchi, Miao, Guopeng, Jiang, Huanru, Su, Huiying, Wang, Yuxian, Chen, Liangwen, Zhang, Jifeng, Wang, Yun
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Excessive nanoplastics not only pose a direct threat to the environment but also have the propensity to adsorb and interact with other pollutants, exacerbating their impact. The coexistence of nanoplastics and heavy metals in soils is a prevalent phenomenon. However, limited research existed about the joint effects of the two contaminants on soil organisms. In this paper, we ascertained the combined toxicity of polystyrene nanoplastics (PS-NPs) and copper (Cu2+) on soil organisms (Caenorhabditis elegans) at quantities that were present in the environment, further exploring whether the two toxicants were synergistic or antagonistic. The outcomes manifested that single exposure to low-dose PS-NPs (1 μg/L) would not cause significant damage to nematodes. After treatment with PS-NPs and Cu2+, the locomotion ability of nematode was impaired, accompanied by an elevation in reactive oxygen species (ROS) level and a biphasic response in antioxidant enzyme activity. Moreover, combined exposure to PS-NPs and Cu2+ induced the mRNA up-regulation of vit-6, cyp-35a2, hsp-16.2, age-1, and cep-1, both of which were stress-related genes. The comparative analysis between groups (with or without PS-NPs) revealed that the combined exposure group resulted in significantly greater toxic effects on nematodes compared with Cu2+ exposure alone. Furthermore, the addition of PS-NPs influenced the metabolic profiles of Caenorhabditis elegans under Cu2+ stress, with numerous differential metabolites associated with oxidative damage or defense mechanism. Overall, these findings manifested that PS-NPs at the expected environmental concentration elevated Cu2+ toxicity on nematodes. [Display omitted] •Exposure to low-dose PS-NPs (1 μg/L) did not cause significant damage to C. elegans.•The toxicity of Cu2+ to nematodes was closely associated with oxidative damage.•PS-NPs at the expected environmental concentration elevated Cu2+ toxicity on C. elegans.
ISSN:0147-6513
1090-2414
1090-2414
DOI:10.1016/j.ecoenv.2024.116749