Continuous and Discrete ZND Models with Aid of Eleven Instants for Complex QR Decomposition of Time-Varying Matrices

The problem of QR decomposition is considered one of the fundamental problems commonly encountered in both scientific research and engineering applications. In this paper, the QR decomposition for complex-valued time-varying matrices is analyzed and investigated. Specifically, by applying the zeroin...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mathematics (Basel) 2023-08, Vol.11 (15), p.3354
Hauptverfasser: Chen, Jianrong, Kang, Xiangui, Zhang, Yunong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The problem of QR decomposition is considered one of the fundamental problems commonly encountered in both scientific research and engineering applications. In this paper, the QR decomposition for complex-valued time-varying matrices is analyzed and investigated. Specifically, by applying the zeroing neural dynamics (ZND) method, dimensional reduction method, equivalent transformations, Kronecker product, and vectorization techniques, a new continuous-time QR decomposition (CTQRD) model is derived and presented. Then, a novel eleven-instant Zhang et al discretization (ZeaD) formula, with fifth-order precision, is proposed and studied. Additionally, five discrete-time QR decomposition (DTQRD) models are further obtained by using the eleven-instant and other ZeaD formulas. Theoretical analysis and numerical experimental results confirmed the correctness and effectiveness of the proposed continuous and discrete ZND models.
ISSN:2227-7390
2227-7390
DOI:10.3390/math11153354