A Novel Physics-Guided Neural Network for Predicting Fatigue Life of Materials

A physics-guided neural network (PGNN) is proposed to predict the fatigue life of materials. In order to reduce the complexity of fatigue life prediction and reduce the data required for network training, the PGNN only predicts the fatigue performance parameters under a specific loading environment,...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied sciences 2024-03, Vol.14 (6), p.2502
Hauptverfasser: Yang, Dexin, Jin, Afang, Li, Yun
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A physics-guided neural network (PGNN) is proposed to predict the fatigue life of materials. In order to reduce the complexity of fatigue life prediction and reduce the data required for network training, the PGNN only predicts the fatigue performance parameters under a specific loading environment, and calculates the fatigue life by substituting the load into the fatigue performance parameters. The advantage of this is that the network does not need to evaluate the effect of numerical changes in the load on fatigue life. The load only needs to participate in the error verification, which reduces the dimension of the function that the neural network needs to approximate. The performance of the PGNN is verified using published data. Due to the reduction in the complexity of the problem, the PGNN can use fewer training samples to obtain more accurate fatigue life prediction results and has a certain extrapolation ability for the changes in trained loading environment parameters. The prediction process of the PGNN for fatigue life is not completely a black box, and the prediction results are helpful for scholars to further study the fatigue phenomenon.
ISSN:2076-3417
2076-3417
DOI:10.3390/app14062502