Abnormal Domain Growth during Polarization Reversal in Lithium Niobate Crystal Modified by Proton Exchange

The results of an experimental study of the abnormal domain structure kinetics in lithium niobate single crystals with a surface layer modified by soft proton exchange are presented. Domain switching in a wide field range allowed two qualitatively different types of domain structure evolution to be...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Crystals (Basel) 2023-01, Vol.13 (1), p.72
Hauptverfasser: Savelyev, Evgeniy, Akhmatkhanov, Andrey, Kosobokov, Mikhail, Tronche, Hervé, Doutre, Florent, Lunghi, Tommaso, Baldi, Pascal, Shur, Vladimir
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The results of an experimental study of the abnormal domain structure kinetics in lithium niobate single crystals with a surface layer modified by soft proton exchange are presented. Domain switching in a wide field range allowed two qualitatively different types of domain structure evolution to be revealed: (1) the traditional growth of hexagonal domains in fields higher than 21.5 kV/mm and (2) the abnormal growth of stripe domains oriented along the Y crystallographic directions in the field range from 3.8 to 21.5 kV/mm. The stripe domains had a width up to 4 µm and depth up to 30 µm. It was shown that the time dependence of the total length of stripe domains could be analyzed in terms of the modified Kolmogorov–Avrami approach, taking into account the transition from the one-dimensional β-model to the one-dimensional α-model. The possibility of the controllable creation of a quasi-periodic structure of stripe domains with an average period of 5 µm by a two-stage polarization switching process was demonstrated. The formation and growth of stripe domains were considered in terms of the kinetic approach to the evolution of the domain structure as a result of the domain walls’ motion under inefficient screening conditions caused by the presence of a modified surface layer. The abnormally low threshold fields were attributed to a presence of a “built-in” field facilitating switching, created by a composition gradient induced by soft proton exchange.
ISSN:2073-4352
2073-4352
DOI:10.3390/cryst13010072