Autophagy regulates Notch degradation and modulates stem cell development and neurogenesis

Autophagy is a conserved, intracellular, lysosomal degradation pathway. While mechanistic aspects of this pathway are increasingly well defined, it remains unclear how autophagy modulation impacts normal physiology. It is, however, becoming clear that autophagy may play a key role in regulating deve...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature communications 2016-02, Vol.7 (1), p.10533-10533, Article 10533
Hauptverfasser: Wu, Xiaoting, Fleming, Angeleen, Ricketts, Thomas, Pavel, Mariana, Virgin, Herbert, Menzies, Fiona M., Rubinsztein, David C.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Autophagy is a conserved, intracellular, lysosomal degradation pathway. While mechanistic aspects of this pathway are increasingly well defined, it remains unclear how autophagy modulation impacts normal physiology. It is, however, becoming clear that autophagy may play a key role in regulating developmental pathways. Here we describe for the first time how autophagy impacts stem cell differentiation by degrading Notch1. We define a novel route whereby this plasma membrane-resident receptor is degraded by autophagy, via uptake into ATG16L1-positive autophagosome-precursor vesicles. We extend our findings using a physiologically relevant mouse model with a hypomorphic mutation in Atg16L1 , a crucial autophagy gene, which shows developmental retention of early-stage cells in various tissues where the differentiation of stem cells is retarded and thus reveal how modest changes in autophagy can impact stem cell fate. This may have relevance for diverse disease conditions, like Alzheimer’s Disease or Crohn’s Disease, associated with altered autophagy. The molecular mechanisms behind how autophagy may impact on developmental pathways and cell fate decisions are unclear. Here Wu et al. identify Notch receptors being taken up into ATG16L1-positive autophagosomes and, using a mouse mutant model, show that changes in autophagy can impact on stem cell fate.
ISSN:2041-1723
2041-1723
DOI:10.1038/ncomms10533