Noether Theorem in Stochastic Optimal Control Problems via Contact Symmetries

We establish a generalization of the Noether theorem for stochastic optimal control problems. Exploiting the tools of jet bundles and contact geometry, we prove that from any (contact) symmetry of the Hamilton–Jacobi–Bellman equation associated with an optimal control problem it is possible to build...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mathematics (Basel) 2021-05, Vol.9 (9), p.953
Hauptverfasser: De Vecchi, Francesco C., Mastrogiacomo, Elisa, Turra, Mattia, Ugolini, Stefania
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We establish a generalization of the Noether theorem for stochastic optimal control problems. Exploiting the tools of jet bundles and contact geometry, we prove that from any (contact) symmetry of the Hamilton–Jacobi–Bellman equation associated with an optimal control problem it is possible to build a related local martingale. Moreover, we provide an application of the theoretical results to Merton’s optimal portfolio problem, showing that this model admits infinitely many conserved quantities in the form of local martingales.
ISSN:2227-7390
2227-7390
DOI:10.3390/math9090953