An Enhanced Two-Level Metaheuristic Algorithm with Adaptive Hybrid Neighborhood Structures for the Job-Shop Scheduling Problem

For solving the job-shop scheduling problem (JSP), this paper proposes a novel two-level metaheuristic algorithm, where its upper-level algorithm controls the input parameters of its lower-level algorithm. The lower-level algorithm is a local search algorithm searching for an optimal JSP solution wi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Complexity (New York, N.Y.) N.Y.), 2020, Vol.2020 (2020), p.1-15
1. Verfasser: Pongchairerks, Pisut
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:For solving the job-shop scheduling problem (JSP), this paper proposes a novel two-level metaheuristic algorithm, where its upper-level algorithm controls the input parameters of its lower-level algorithm. The lower-level algorithm is a local search algorithm searching for an optimal JSP solution within a hybrid neighborhood structure. To generate each neighbor solution, the lower-level algorithm randomly uses one of two neighbor operators by a given probability. The upper-level algorithm is a population-based search algorithm developed for controlling the five input parameters of the lower-level algorithm, i.e., a perturbation operator, a scheduling direction, an ordered pair of two neighbor operators, a probability of selecting a neighbor operator, and a start solution-representing permutation. Many operators are proposed in this paper as options for the perturbation and neighbor operators. Under the control of the upper-level algorithm, the lower-level algorithm can be evolved in its input-parameter values and neighborhood structure. Moreover, with the perturbation operator and the start solution-representing permutation controlled, the two-level metaheuristic algorithm performs like a multistart iterated local search algorithm. The experiment’s results indicated that the two-level metaheuristic algorithm outperformed its previous variant and the two other high-performing algorithms in terms of solution quality.
ISSN:1076-2787
1099-0526
DOI:10.1155/2020/3489209