Optimization of multi-angle Magneto-Acousto-Electrical Tomography (MAET) based on a numerical method
Magneto-Acousto-Electrical Tomography (MAET) is a novel multi-physics imaging method, which promises to offer a unique biophysical property of tissue electrical impedance with the additional benefit of excellent spatial resolution of the ultrasonic imaging. It opens the potential for early diagnosis...
Gespeichert in:
Veröffentlicht in: | Mathematical biosciences and engineering : MBE 2020-03, Vol.17 (4), p.2864-2880 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Magneto-Acousto-Electrical Tomography (MAET) is a novel multi-physics imaging method, which promises to offer a unique biophysical property of tissue electrical impedance with the additional benefit of excellent spatial resolution of the ultrasonic imaging. It opens the potential for early diagnosis of cancer by revealing changes of dielectric characteristics. However, direct MAET is unable to image the irregularly-shaped lesions fully due to the dependence on the angle between conductivity boundary and ultrasound beam direction. In this paper, a numerical simulation of multi-angle MAET is presented for an improved image reconstruction for MAET in order to discern irregularly-shaped tumors in different positions. The results show that the conductivity boundary interfaces are invisible in single angle B-mode reconstructed image, wherever the ultrasound beam and conductivity boundary are nearly parallel. When the multi-angle scanning was adopted, the image reconstructed with image rotation method reproduced the original object pattern. Furthermore, the relationship between reconstruction error and the number of angles was also discussed. It is found that 12 angles would be necessary to achieve nearly the optimal reconstruction. Finally, reconstructed images in L 2 norm of the error with the measurement noise are presented. |
---|---|
ISSN: | 1551-0018 1551-0018 |
DOI: | 10.3934/mbe.2020161 |