Long-term whole blood DNA preservation by cost-efficient cryosilicification

Deoxyribonucleic acid (DNA) is the blueprint of life, and cost-effective methods for its long-term storage could have many potential benefits to society. Here we present the method of in situ cryosilicification of whole blood cells, which allows long-term preservation of DNA. Importantly, our straig...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature communications 2022-10, Vol.13 (1), p.6265-6265, Article 6265
Hauptverfasser: Zhou, Liang, Lei, Qi, Guo, Jimin, Gao, Yuanyuan, Shi, Jianjun, Yu, Hong, Yin, Wenxiang, Cao, Jiangfan, Xiao, Botao, Andreo, Jacopo, Ettlinger, Romy, Jeffrey Brinker, C., Wuttke, Stefan, Zhu, Wei
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Deoxyribonucleic acid (DNA) is the blueprint of life, and cost-effective methods for its long-term storage could have many potential benefits to society. Here we present the method of in situ cryosilicification of whole blood cells, which allows long-term preservation of DNA. Importantly, our straightforward approach is inexpensive, reliable, and yields cryosilicified samples that fulfill the essential criteria for safe, long-term DNA preservation, namely robustness against external stressors, such as radical oxygen species or ultraviolet radiation, and long-term stability in humid conditions at elevated temperatures. Our approach could enable the room temperature storage of genomic information in book-size format for more than one thousand years (thermally equivalent), costing only 0.5 $/person. Additionally, our demonstration of 3D-printed DNA banking artefacts, could potentially allow ‘artificial fossilization’. Cost-effective methods for long-term storage of DNA are desired. Here the authors present a method for in situ cryosilicification of whole blood cells, allowing long-term and room temperature preservation of genomic information for only approximately $0.5 per sample.
ISSN:2041-1723
2041-1723
DOI:10.1038/s41467-022-33759-y