Nogo-B is a key mediator of hepatic ischemia and reperfusion injury

Nogo-B is an endoplasmic reticulum-residential protein with distinctive functions in different diseases. However, it remains unclear the role of Nogo-B in liver sterile inflammatory injury. This study aims to elucidate the functions and mechanisms in liver ischemia and reperfusion injury (IRI). The...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Redox biology 2020-10, Vol.37, p.101745-101745, Article 101745
Hauptverfasser: Rao, Jianhua, Cheng, Feng, Zhou, Haoming, Yang, Wenjie, Qiu, Jiannan, Yang, Chao, Ni, Xuehao, Yang, Shikun, Xia, Yongxiang, Pan, Xiongxiong, Zhang, Feng, Lu, Ling, Wang, Xuehao
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Nogo-B is an endoplasmic reticulum-residential protein with distinctive functions in different diseases. However, it remains unclear the role of Nogo-B in liver sterile inflammatory injury. This study aims to elucidate the functions and mechanisms in liver ischemia and reperfusion injury (IRI). The Nogo-B expression and liver function were analyzed in biopsy/serum specimens from 36 patients undergoing ischemia-related hepatectomy and in a mouse model of liver IRI. Human specimens were harvested prior to ischemia and post-reperfusion. The Nogo-B knockout (Nogo-BKO) and myeloid-specific Nogo-B knockout (Nogo-BMKO) mice were used to analyze the function and mechanism of Nogo-B in a mouse model of liver IRI. In human specimens, the Nogo-B expression was positively correlated with higher levels of serum transaminase (sALT) and severe histopathological injury at one day post-hepatectomy. Moreover, Nogo-B is mainly expressed on macrophages in normal and ischemic liver tissues from human and mice. Unlike in controls, the Nogo-BKO or Nogo-BMKO livers was protected against IRI, with reduced reactive oxygen species (ROS) production and liver inflammation in ischemic livers. In parallel in vitro studies, Nogo-B deficiency reduced M1 macrophage polarization and inhibited proinflammatory cytokines (TNF-α, IL-6, MCP-1 and iNOS) in response to LPS or HMGB-1 stimulation. Mechanistic studies showed that Nogo-B bound to MST1/2, increased MST1/2, LAST1, and YAP phosphorylation, leading to reduced YAP activity. Interestingly, disruption of macrophage YAP abolished Nogo-B deficiency-mediated cytoprotective effects in vitro and in vivo. Thus, YAP is crucial for the regulation of macrophage Nogo-B-triggered liver inflammation. Nogo-B promotes macrophage-related innate inflammation and contributes to IR-induced liver injury by activating the MST-mediated Hippo/YAP pathway, which provides a potential therapeutic target for clinical management in liver IRI. Liver ischemia and reperfusion injury (IRI), characterized by acute sterile inflammation and hepatocellular damage, is a major factor in initiating liver dysfunction and failure after liver transplantation and hepatectomy. This study first documented the roles and mechanisms of Nogo-B in hepatic IRI. Nogo-B promotes macrophage-related innate inflammation and contributes to IR-induced liver injury by activating the MST-mediated Hippo/YAP pathway. Our findings revealed that Nogo-B is a key mediator of hepatic IRI.
ISSN:2213-2317
2213-2317
DOI:10.1016/j.redox.2020.101745