Supplementing N-carbamoylglutamate in late gestation increases newborn calf weight by enhanced placental expression of mTOR and angiogenesis factor genes in dairy cows

The objective of this study was to investigate whether supplementation with N-carbamoylglutamate (NCG) to cows during late gestation alters uteroplacental tissue nutrient transporters, calf metabolism and newborn weight. Thirty multiparous Chinese Holstein cows were used in a randomized complete blo...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Animal Nutrition 2021-12, Vol.7 (4), p.981-988
Hauptverfasser: Gu, Fengfei, Jiang, Luyi, Xie, Linyu, Wang, Diming, Zhao, Fengqi, Liu, Jianxin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The objective of this study was to investigate whether supplementation with N-carbamoylglutamate (NCG) to cows during late gestation alters uteroplacental tissue nutrient transporters, calf metabolism and newborn weight. Thirty multiparous Chinese Holstein cows were used in a randomized complete block design experiment. During the last 28 d of pregnancy, cows were fed a diet without (CON) or with NCG (20 g/d per cow). The body weight of calves was weighed immediately after birth. Placentome samples were collected at parturition and used to assess mRNA expression of genes involved in transport of arginine, glucose, fatty acid and angiogenesis factors, as well as the mammalian target of rapamycin (mTOR) pathway. Blood samples of calves before colostrum consumption were also collected for the detection of plasma parameters, amino acids (AA) and metabolomics analysis. The newborn weight (P = 0.02) and plasma Arg concentration of NCG-calves was significantly higher (P = 0.05) than that of CON-calves, and the plasma concentrations of urea nitrogen tended to be lower (P = 0.10) in the NCG group. The mRNA abundance of genes involved in glucose transport (solute carrier family 2 member 3 [SLC2A3], P 
ISSN:2405-6545
2405-6383
DOI:10.1016/j.aninu.2021.05.007