C1;1-smoothness of constrained solutions in the calculus of variations with application to mean field games

We derive necessary optimality conditions for minimizers of regular functionals in the calculus of variations under smooth state constraints. In the literature, this classical problem is widely investigated. The novelty of our result lies in the fact that the presence of state constraints enters the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mathematics in engineering 2019, Vol.1 (1), p.174-203
Hauptverfasser: Piermarco Cannarsa, Rossana Capuani, Pierre Cardaliaguet
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We derive necessary optimality conditions for minimizers of regular functionals in the calculus of variations under smooth state constraints. In the literature, this classical problem is widely investigated. The novelty of our result lies in the fact that the presence of state constraints enters the Euler-Lagrange equations as a local feedback, which allows to derive the C1;1-smoothness of solutions. As an application, we discuss a constrained Mean Field Games problem, for which our optimality conditions allow to construct Lipschitz relaxed solutions, thus improving an existence result due to the first two authors.
ISSN:2640-3501
DOI:10.3934/Mine.2018.1.174