Industrial Transfer Learning for Multivariate Time Series Segmentation: A Case Study on Hydraulic Pump Testing Cycles
Industrial data scarcity is one of the largest factors holding back the widespread use of machine learning in manufacturing. To overcome this problem, the concept of transfer learning was developed and has received much attention in recent industrial research. This paper focuses on the problem of ti...
Gespeichert in:
Veröffentlicht in: | Sensors (Basel, Switzerland) Switzerland), 2023-03, Vol.23 (7), p.3636 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Industrial data scarcity is one of the largest factors holding back the widespread use of machine learning in manufacturing. To overcome this problem, the concept of transfer learning was developed and has received much attention in recent industrial research. This paper focuses on the problem of time series segmentation and presents the first in-depth research on transfer learning for deep learning-based time series segmentation on the industrial use case of end-of-line pump testing. In particular, we investigate whether the performance of deep learning models can be increased by pretraining the network with data from other domains. Three different scenarios are analyzed: source and target data being closely related, source and target data being distantly related, and source and target data being non-related. The results demonstrate that transfer learning can enhance the performance of time series segmentation models with respect to accuracy and training speed. The benefit can be most clearly seen in scenarios where source and training data are closely related and the number of target training data samples is lowest. However, in the scenario of non-related datasets, cases of negative transfer learning were observed as well. Thus, the research emphasizes the potential, but also the challenges, of industrial transfer learning. |
---|---|
ISSN: | 1424-8220 1424-8220 |
DOI: | 10.3390/s23073636 |