Modeling of Electric Vehicle Charging Demand and Coincidence of Large-Scale Charging Loads in Different Charging Locations

Battery electric vehicles (BEVs) are becoming more widespread and consequently the charging load from vehicles is rapidly increasing. For energy system and grid planning, the magnitude and coincidence of these charging loads are crucial parameters. Furthermore, to determine the charging power demand...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE access 2023, Vol.11, p.114291-114315
Hauptverfasser: Jokinen, Ilkka, Lehtonen, Matti
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Battery electric vehicles (BEVs) are becoming more widespread and consequently the charging load from vehicles is rapidly increasing. For energy system and grid planning, the magnitude and coincidence of these charging loads are crucial parameters. Furthermore, to determine the charging power demand in different charging locations, the coincidence of charging in them must be examined. Thus, in this study, the coincidence factors of charging loads in different charging locations were analyzed for a large-scale BEV fleet, considering available charging power and ambient temperature. In addition, the mean charging load, deviation of load, and flexibility potential within charging events, were examined based on the same parameters. The coincidence factors of charging increased with lower available charging power and lower ambient temperature. By location type, the highest factors were at work, at hotel, and at home, but overall, the coincidence of charging remained low for a large-scale BEV fleet. Moreover, the relative standard deviation of a composite load for a large number of BEVs was low, whereas the opposite was found for a small number of BEVs. The modeling of the charging loads in this study was based on activity-travel schedules from travel survey data, from which 12773 respondents with 40321 trips were included.
ISSN:2169-3536
2169-3536
DOI:10.1109/ACCESS.2023.3322278