Peroxydisulfate activation by LaNiO3 nanoparticles with different morphologies for the degradation of organic pollutants
A series of LaNiO3 perovskite nanoparticles with different morphologies, such as spheres, rods and cubes, were prepared through co-precipitation and hydrothermal methods, and used as the catalysts for peroxydisulfate (PDS) activation. The physical and chemical characterization of LaNiO3 perovskites...
Gespeichert in:
Veröffentlicht in: | Water science and technology 2022-01, Vol.85 (1), p.39-51 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | A series of LaNiO3 perovskite nanoparticles with different morphologies, such as spheres, rods and cubes, were prepared through co-precipitation and hydrothermal methods, and used as the catalysts for peroxydisulfate (PDS) activation. The physical and chemical characterization of LaNiO3 perovskites was performed, including X-ray diffraction (XRD), scanning electron microscopy (SEM), nitrogen isotherm absorption (BET), electrochemical impedance spectroscopy (EIS), and X-ray photoelectron spectroscopy (XPS). The LaNiO3 with different shapes showed different activities in Acid Orange 7 (AO7) degradation. Sphere-like LaNiO3 exhibited the highest catalytic activity, which is probably due to the largest specific surface area, higher proportion of reductive Ni2+ and the higher electron transfer ability. The radical scavenging experiments and electron paramagnetic resonance (EPR) revealed the production of massive sulfate radicals (SO4•−) and hydroxyl radicals (•OH) during the oxidation. Finally, the possible mechanisms of PDS activation and AO7 degradation were proposed. The prepared LaNiO3 perovskites also showed excellent reusability and stability. |
---|---|
ISSN: | 0273-1223 1996-9732 |
DOI: | 10.2166/wst.2021.504 |