In vitro antiviral effect of silver nanoparticles against SARS-CoV-2

Introduction: COVID-19 is an acute respiratory tract disease caused by the emerging coronavirus SARS-CoV-2. Although several options for chemoprophylaxis are under development, effective treatment for COVID-19 is not yet available. Objective: To investigate the antiviral properties of synthesized si...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Iatreia (Medellín, Colombia) Colombia), 2023-01, Vol.36 (1), p.5-15
Hauptverfasser: Flórez-Álvarez, Lizdany, Hernandez, Juan C., Zapata-Builes, Wildeman, Charry-Zuluaga, José Iván, Jaramillo, José R., Taborda, Natalia A., Gonzalez, Juan D., Martínez, Larry L., Yasssin-Noreña, Lina Maria
Format: Artikel
Sprache:eng ; spa
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Introduction: COVID-19 is an acute respiratory tract disease caused by the emerging coronavirus SARS-CoV-2. Although several options for chemoprophylaxis are under development, effective treatment for COVID-19 is not yet available. Objective: To investigate the antiviral properties of synthesized silver nanoparticles (AgNPs) against SARS-CoV-2 using in vitro models. Materials and methods: This work synthesized AgNPs using an electrochemical method and characterized them using physico-chemical techniques (ICP-OES, ultraviolet-visible spectroscopy, and transmission electron microscopy). AgNPs with diameter sizes ranging between 2.6 to 30 nm and an average size of 6.2 nm were obtained by the electrochemical method. The cytotoxic effect and the antiviral activity of prepared AgNPs against SARS-CoV-2 were evaluated in vitro using Vero E6 cells. Cell viability was evaluated by MTT assay in the presence of serial dilutions of AgNPs. The antiviral effect of AgNPs was evaluated before and after the infection of Vero E6 cells by plaque assay. Results: Cytotoxic effect was observed at concentrations above 0.07 ppm. AgNPs exhibit a significant reduction of SARS-CoV-2 viral titer after a pre-post treatment strategy with inhibition of 96.5%, 64.13%, and 74.72% at 0.03, 0.017, and 0.008 ppm, respectively. Conclusion: Our results suggest that AgNPs could reduce SARS-CoV-2 replication with a low cytotoxic effect. Still, additional in vitro and in vivo studies are required to define its potential therapeutic application in humans.
ISSN:0121-0793
2011-7965
DOI:10.17533/udea.iatreia.188