Green synthesized SiO2@OPW nanocomposites for enhanced Lead (II) removal from water
The orange peel waste (OPW) was chemically spiked with silica nanospheres, to develop a novel, nanocomposite (SiO2@OPW) with enhanced adsorption capacity for heavy metals. The dispersion of silica nanospheres into orange peel waste was confirmed by XRD, FTIR, TEM, SEM and EDX. Adsorption of Pb2+ ion...
Gespeichert in:
Veröffentlicht in: | Arabian journal of chemistry 2020-01, Vol.13 (1), p.2496-2507 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The orange peel waste (OPW) was chemically spiked with silica nanospheres, to develop a novel, nanocomposite (SiO2@OPW) with enhanced adsorption capacity for heavy metals. The dispersion of silica nanospheres into orange peel waste was confirmed by XRD, FTIR, TEM, SEM and EDX. Adsorption of Pb2+ ions onto SiO2@OPW was studied in batch mode under varying process conditions such as pH, metal concentration, contact time and adsorbent dosage. The maximum adsorption capacity for OPW and SiO2@OPW was 166.7 mg/g and 200.0 mg/g, respectively calculated employing the Langmuir isotherm model. The kinetic data followed pseudo second order and intraparticle diffusion models. The maximum removal of Pb2+ ions was at pH = 6.0, adsorbent dosage = 0.02 g/L and contact time 60 min. Regeneration and reusability of SiO2@OPW was studied for five cycles. Owing to reusability and high adsorption capacity, SiO2@OPW nanocomposites may be considered as a promising adsorbent for the removal of heavy metals from water and wastewater. |
---|---|
ISSN: | 1878-5352 1878-5379 |
DOI: | 10.1016/j.arabjc.2018.06.003 |