Eigenvalues for a class of singular problems involving p(x)-Biharmonic operator and q(x)-Hardy potential

In this paper, we consider the nonlinear eigenvalue problem: where is a regular bounded domain of ℝ , ) = , ) the distance function from the boundary , is a positive real number, and functions (⋅), (⋅) are supposed to be continuous on satisfying for any ∈ . We prove the existence of at least one non...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advances in nonlinear analysis 2019-11, Vol.9 (1), p.1130-1144
Hauptverfasser: Khalil, Abdelouahed El, Laghzal, Mohamed, Alaoui, My Driss Morchid, Touzani, Abdelfattah
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper, we consider the nonlinear eigenvalue problem: where is a regular bounded domain of ℝ , ) = , ) the distance function from the boundary , is a positive real number, and functions (⋅), (⋅) are supposed to be continuous on satisfying for any ∈ . We prove the existence of at least one non-decreasing sequence of positive eigenvalues. Moreover, we prove that sup = +∞, where is the spectrum of the problem. Furthermore, we give a proof of positivity of inf > 0 provided that Hardy-Rellich inequality holds.
ISSN:2191-950X
2191-950X
DOI:10.1515/anona-2020-0042