Eigenvalues for a class of singular problems involving p(x)-Biharmonic operator and q(x)-Hardy potential
In this paper, we consider the nonlinear eigenvalue problem: where is a regular bounded domain of ℝ , ) = , ) the distance function from the boundary , is a positive real number, and functions (⋅), (⋅) are supposed to be continuous on satisfying for any ∈ . We prove the existence of at least one non...
Gespeichert in:
Veröffentlicht in: | Advances in nonlinear analysis 2019-11, Vol.9 (1), p.1130-1144 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this paper, we consider the nonlinear eigenvalue problem:
where
is a regular bounded domain of ℝ
,
) =
,
) the distance function from the boundary
,
is a positive real number, and functions
(⋅),
(⋅) are supposed to be continuous on
satisfying
for any
∈
. We prove the existence of at least one non-decreasing sequence of positive eigenvalues. Moreover, we prove that sup
= +∞, where
is the spectrum of the problem. Furthermore, we give a proof of positivity of inf
> 0 provided that Hardy-Rellich inequality holds. |
---|---|
ISSN: | 2191-950X 2191-950X |
DOI: | 10.1515/anona-2020-0042 |