Assessing the performance of clinoptilolite for controlling and releasing ammonium in agricultural applications

To develop soil holding capacity of NH4+ and reduce the energy consumption of industrial fertilizer production, different dosages of clinoptilolite mixed with soil were used to absorb NH4+, which was also simulated using Freundlich and Langmuir equation under different conditions. The results showed...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Energy reports 2021-11, Vol.7, p.887-895
Hauptverfasser: Wang, Yanzhi, Sun, Yidi, Chen, Hongyang, Wu, Qi, Chi, Daocai
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:To develop soil holding capacity of NH4+ and reduce the energy consumption of industrial fertilizer production, different dosages of clinoptilolite mixed with soil were used to absorb NH4+, which was also simulated using Freundlich and Langmuir equation under different conditions. The results showed that NH4+ adsorption of clinoptilolite-amended soil changed from multilayer adsorption to single-layer adsorption with the increase in clinoptilolite application rates. The optimal ratio of clinoptilolite applied to the soil for high adsorption efficiency was 0.01g 10g−1. The co-existence of Na+ and K+ increased the NH4+ adsorption capacity of clinoptilolite-amended soil relative to the existence of single Na+. This showed that K+ was less competitive towards NH4+ than Na+. Decreasing water quantity, which increased the total soil adsorption capacity by a factor of 2 to 3, had the most significant effect and helped regulate the release of nitrogen in clinoptilolite-amended soil. In sum, clinoptilolite can enhance soil nitrogen holding capacity, which shows great potentials to reduce the energy consumption of industrial urea production.
ISSN:2352-4847
2352-4847
DOI:10.1016/j.egyr.2021.09.184