Flow Patterns and Particle Residence Times in the Oral Cavity during Inhaled Drug Delivery

Pulmonary drug delivery aims to deliver particles deep into the lungs, bypassing the mouth−throat airway geometry. However, micron particles under high flow rates are susceptible to inertial impaction on anatomical sites that serve as a defense system to filter and prevent foreign particles from ent...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Pharmaceuticals (Basel, Switzerland) Switzerland), 2022-10, Vol.15 (10), p.1259
Hauptverfasser: Vara Almirall, Brenda, Inthavong, Kiao, Bradshaw, Kimberley, Singh, Narinder, Johnson, Aaron, Storey, Pippa, Salati, Hana
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Pulmonary drug delivery aims to deliver particles deep into the lungs, bypassing the mouth−throat airway geometry. However, micron particles under high flow rates are susceptible to inertial impaction on anatomical sites that serve as a defense system to filter and prevent foreign particles from entering the lungs. The aim of this study was to understand particle aerodynamics and its possible deposition in the mouth−throat airway that inhibits pulmonary drug delivery. In this study, we present an analysis of the aerodynamics of inhaled particles inside a patient-specific mouth−throat model generated from MRI scans. Computational Fluid Dynamics with a Discrete Phase Model for tracking particles was used to characterize the airflow patterns for a constant inhalation flow rate of 30 L/min. Monodisperse particles with diameters of 7 μm to 26 μm were introduced to the domain within a 3 cm-diameter sphere in front of the oral cavity. The main outcomes of this study showed that the time taken for particle deposition to occur was 0.5 s; a narrow stream of particles (medially and superiorly) were transported by the flow field; larger particles > 20 μm deposited onto the oropharnyx, while smaller particles < 12 μm were more disperse throughout the oral cavity and navigated the curved geometry and laryngeal jet to escape through the tracheal outlet. It was concluded that at a flow rate of 30 L/min the particle diameters depositing on the larynx and trachea in this specific patient model are likely to be in the range of 7 μm to 16 μm. Particles larger than 16 μm primarily deposited on the oropharynx.
ISSN:1424-8247
1424-8247
DOI:10.3390/ph15101259