Estimating fish abundance at spawning aggregations from courtship sound levels

Sound produced by fish spawning aggregations (FSAs) permits the use of passive acoustic methods to identify the timing and location of spawning. However, difficulties in relating sound levels to abundance have impeded the use of passive acoustics to conduct quantitative assessments of biomass. Here...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Scientific reports 2017-06, Vol.7 (1), p.3340-14, Article 3340
Hauptverfasser: Rowell, Timothy J., Demer, David A., Aburto-Oropeza, Octavio, Cota-Nieto, Juan José, Hyde, John R., Erisman, Brad E.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Sound produced by fish spawning aggregations (FSAs) permits the use of passive acoustic methods to identify the timing and location of spawning. However, difficulties in relating sound levels to abundance have impeded the use of passive acoustics to conduct quantitative assessments of biomass. Here we show that models of measured fish sound production versus independently measured fish density can be generated to estimate abundance and biomass from sound levels at FSAs. We compared sound levels produced by spawning Gulf Corvina ( Cynoscion othonopterus ) with simultaneous measurements of density from active acoustic surveys in the Colorado River Delta, Mexico. During the formation of FSAs, we estimated peak abundance at 1.53 to 1.55 million fish, which equated to a biomass of 2,133 to 2,145 metric tons. Sound levels ranged from 0.02 to 12,738 Pa 2 , with larger measurements observed on outgoing tides. The relationship between sound levels and densities was variable across the duration of surveys but stabilized during the peak spawning period after high tide to produce a linear relationship. Our results support the use of active acoustic methods to estimate density, abundance, and biomass of fish at FSAs; using appropriately scaled empirical relationships, sound levels can be used to infer these estimates.
ISSN:2045-2322
2045-2322
DOI:10.1038/s41598-017-03383-8