A Deposition Model: Riemann Problem and Flux-Function Limits of Solutions

The Riemann solutions of a deposition model are shown. A singular flux-function limit of the obtained Riemann solutions is considered. As a result, it is shown that the Riemann solutions of the deposition model just converge to the Riemann solutions of the limit system, the scalar conservation law w...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Abstract and applied analysis 2018, Vol.2018 (2018), p.1-14
Hauptverfasser: Cheng, Hongjun, Li, Shiwei
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The Riemann solutions of a deposition model are shown. A singular flux-function limit of the obtained Riemann solutions is considered. As a result, it is shown that the Riemann solutions of the deposition model just converge to the Riemann solutions of the limit system, the scalar conservation law with a linear flux function involving discontinuous coefficient. Especially, for some initial data, the two-shock Riemann solution of the deposition model tends to the delta-shock Riemann solution of the limit system; by contrast, for some initial data, the two-rarefaction-wave Riemann solution of the deposition model tends to the vacuum Riemann solution of the limit system. Some numerical results exhibiting the formation processes of delta-shocks and vacuum states are presented.
ISSN:1085-3375
1687-0409
DOI:10.1155/2018/8569435