Coupling of Rigor Mortis and Intestinal Necrosis during C. elegans Organismal Death

Organismal death is a process of systemic collapse whose mechanisms are less well understood than those of cell death. We previously reported that death in C. elegans is accompanied by a calcium-propagated wave of intestinal necrosis, marked by a wave of blue autofluorescence (death fluorescence). H...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Cell reports (Cambridge) 2018-03, Vol.22 (10), p.2730-2741
Hauptverfasser: Galimov, Evgeniy R., Pryor, Rosina E., Poole, Sarah E., Benedetto, Alexandre, Pincus, Zachary, Gems, David
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Organismal death is a process of systemic collapse whose mechanisms are less well understood than those of cell death. We previously reported that death in C. elegans is accompanied by a calcium-propagated wave of intestinal necrosis, marked by a wave of blue autofluorescence (death fluorescence). Here, we describe another feature of organismal death, a wave of body wall muscle contraction, or death contraction (DC). This phenomenon is accompanied by a wave of intramuscular Ca2+ release and, subsequently, of intestinal necrosis. Correlation of directions of the DC and intestinal necrosis waves implies coupling of these death processes. Long-lived insulin/IGF-1-signaling mutants show reduced DC and delayed intestinal necrosis, suggesting possible resistance to organismal death. DC resembles mammalian rigor mortis, a postmortem necrosis-related process in which Ca2+ influx promotes muscle hyper-contraction. In contrast to mammals, DC is an early rather than a late event in C. elegans organismal death. [Display omitted] [Display omitted] •A wave of body wall muscle contraction occurs during C. elegans organismal death•This rigor mortis-like phenomenon is coupled to a wave of intestinal necrosis•Both waves are accompanied by Ca2+ release and a drop in ATP levels•Properties of long-lived daf-2 mutants suggest resistance to organismal death Galimov et al. describe mechanisms of organismal death in C. elegans. They document a rigor mortis-like wave of muscle hyper-contraction accompanied by Ca2+ release and falling ATP, which is coupled to the previously described wave of intestinal necrosis in a process that resembles a distorted and deadly defecation cycle.
ISSN:2211-1247
2211-1247
DOI:10.1016/j.celrep.2018.02.050