Generalized interval exchanges and the 2–3 conjecture
We introduce the notion of a generalized interval exchange $$\phi _\mathcal{A} $$ induced by a measurable k-partition $$\mathcal{A} = \left\{ {A_1 ,...,A_k } \right\}$$ of [0,1). $$\phi _\mathcal{A} $$ can be viewed as the corresponding restriction of a nondecreasing function $$f_\mathcal{A} $$ on ℝ...
Gespeichert in:
Veröffentlicht in: | Open mathematics (Warsaw, Poland) Poland), 2005-09, Vol.3 (3), p.412-429 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We introduce the notion of a generalized interval exchange
$$\phi _\mathcal{A} $$
induced by a measurable k-partition
$$\mathcal{A} = \left\{ {A_1 ,...,A_k } \right\}$$
of [0,1).
$$\phi _\mathcal{A} $$
can be viewed as the corresponding restriction of a nondecreasing function
$$f_\mathcal{A} $$
on ℝ with
$$f_\mathcal{A} (0) = 0, f_\mathcal{A} (k) = 1$$
. A is called λ-dense if λ(A
i∩(a, b))>0 for each i and any 0≤ a< b≤1. We show that the 2–3 Furstenberg conjecture is invalid if and only if there are 2 and 3 λ-dense partitions A and B of [0,1), such that
$$f_\mathcal{A} \circ f_\mathcal{B} = f_\mathcal{B} \circ f_\mathcal{A} $$
. We give necessary and sufficient conditions for this equality to hold. We show that for each integer m≥2, such that 3∤2m+1, there exist 2 and 3 non λ-dense partitions A and B of [0,1), corresponding to the interval exchanges on 2m intervals, for which
$$f_\mathcal{A} $$
and
$$f_\mathcal{B} $$
commute. |
---|---|
ISSN: | 2391-5455 2391-5455 |
DOI: | 10.2478/BF02475916 |