Design of Augmented Reality Training Content for Railway Vehicle Maintenance Focusing on the Axle-Mounted Disc Brake System

Light maintenance training for electric multiple-unit components of the organization of railway operations is generally conducted using maintenance manuals and work videos, following the guidelines of each organization. These manuals are in the form of booklets, complicated and inconvenient for main...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied sciences 2021-10, Vol.11 (19), p.9090
Hauptverfasser: Kwon, Hwi-Jin, Lee, Seung-Il, Park, Ju-Hyung, Kim, Chul-Su
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Light maintenance training for electric multiple-unit components of the organization of railway operations is generally conducted using maintenance manuals and work videos, following the guidelines of each organization. These manuals are in the form of booklets, complicated and inconvenient for maintenance operators to carry. Therefore, training content that visualizes maintenance procedures in a three-dimensions (3D) space is necessary to overcome the drawbacks of booklet-type training. In this study, we developed augmented reality (AR)-based training content for railway vehicle maintenance to increase training efficiency. Providing warning signs for risky procedures reduces human error, and transparency control makes trainees check the product hierarchy. A virtual experience based on the maintenance manual is provided to improve maintenance proficiency. An axle-mounted disc brake system maintenance manual is implemented in AR to reflect the requirements of maintenance operators. The convenience of this tool is improved by loading the AR content on a mobile device. Two methods of verification were used: the system usability scale (SUS) survey and training efficiency evaluation. The resulting SUS grade was B (excellent), and the training efficiency improved by 34%.
ISSN:2076-3417
2076-3417
DOI:10.3390/app11199090