Deep CO2 in the end-Triassic Central Atlantic Magmatic Province

Large Igneous Province eruptions coincide with many major Phanerozoic mass extinctions, suggesting a cause-effect relationship where volcanic degassing triggers global climatic changes. In order to fully understand this relationship, it is necessary to constrain the quantity and type of degassed mag...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature communications 2020-04, Vol.11 (1), p.1-11, Article 1670
Hauptverfasser: Capriolo, Manfredo, Marzoli, Andrea, Aradi, László E., Callegaro, Sara, Dal Corso, Jacopo, Newton, Robert J., Mills, Benjamin J. W., Wignall, Paul B., Bartoli, Omar, Baker, Don R., Youbi, Nasrrddine, Remusat, Laurent, Spiess, Richard, Szabó, Csaba
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Large Igneous Province eruptions coincide with many major Phanerozoic mass extinctions, suggesting a cause-effect relationship where volcanic degassing triggers global climatic changes. In order to fully understand this relationship, it is necessary to constrain the quantity and type of degassed magmatic volatiles, and to determine the depth of their source and the timing of eruption. Here we present direct evidence of abundant CO 2 in basaltic rocks from the end-Triassic Central Atlantic Magmatic Province (CAMP), through investigation of gas exsolution bubbles preserved by melt inclusions. Our results indicate abundance of CO 2 and a mantle and/or lower-middle crustal origin for at least part of the degassed carbon. The presence of deep carbon is a key control on the emplacement mode of CAMP magmas, favouring rapid eruption pulses (a few centuries each). Our estimates suggest that the amount of CO 2 that each CAMP magmatic pulse injected into the end-Triassic atmosphere is comparable to the amount of anthropogenic emissions projected for the 21 st century. Such large volumes of volcanic CO 2 likely contributed to end-Triassic global warming and ocean acidification. Many major mass extinction events have been associated with large volcanic eruption events, with the argument that large volumes of volcanic degassing could trigger past global climate changes. Here, the authors find that during the end-Triassic extinction event volcanic pulses emitted large amounts of CO 2 comparable to projected anthropogenic emissions for the 21 st century in the future 2 °C warming scenario.
ISSN:2041-1723
2041-1723
DOI:10.1038/s41467-020-15325-6