Synergy of Ni micro-alloying and thermomechanical processing in Al–Mg–Si–Cu–Zn–Fe–Mn alloys with enhanced bendability
Synergy of Ni micro-alloying and thermomechanical processing on the phase distribution, formability and bendability of Al–Mg–Si–Cu–Zn–Fe–Mn alloys was systematically studied in this paper. With the addition of micro-alloying Ni, the Ni-containing Fe-rich phase can be formed, which not only serves as...
Gespeichert in:
Veröffentlicht in: | Journal of materials research and technology 2021-11, Vol.15, p.5059-5077 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Synergy of Ni micro-alloying and thermomechanical processing on the phase distribution, formability and bendability of Al–Mg–Si–Cu–Zn–Fe–Mn alloys was systematically studied in this paper. With the addition of micro-alloying Ni, the Ni-containing Fe-rich phase can be formed, which not only serves as nucleation sites of Mg–Si precipitates (such as, Q phase) during the casting process, but also improves the uniform distribution level of Fe-rich phases after homogenization. The formability and bendability of Ni-containing alloy can be both improved to a certain level due to the positive effect of Ni micro-alloying. In comparison, if increasing the cold rolling deformation between hot rolling and annealing, the distribution of multi-scale Fe-rich phases can be significantly improved based on the synergy of Ni micro-alloying and thermomechanical processing. And finally, this improvement further results in the great improvements in the microstructure, texture, formability (average r = 0.688, △r = −0.09) and bendability of the alloy together. Based on the microstructure evolution, the synergy mechanism of Ni micro-alloying and thermomechanical processing is put forward in this paper. |
---|---|
ISSN: | 2238-7854 |
DOI: | 10.1016/j.jmrt.2021.10.112 |