An Effective Attack-Resilient Kalman Filter-Based Approach for Dynamic State Estimation of Synchronous Machine

Kalman filtering has been widely considered for dynamic state estimation in smart grids. Despite its unique merits, the Kalman Filter (KF)-based dynamic state estimation can be undesirably influenced by cyber adversarial attacks that can potentially be launched against the communication links in the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Iranian journal of electrical & electronic engineering 2020-09, Vol.16 (3), p.279-291
Hauptverfasser: Z. Kazemi, A. A. Safavi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Kalman filtering has been widely considered for dynamic state estimation in smart grids. Despite its unique merits, the Kalman Filter (KF)-based dynamic state estimation can be undesirably influenced by cyber adversarial attacks that can potentially be launched against the communication links in the Cyber-Physical System (CPS). To enhance the security of KF-based state estimation, in this paper, the basic KF-based method is enhanced by incorporating the dynamics of the attack vector into the system state-space model using an observer-based preprocessing stage. The proposed technique not only immunizes the state estimation against cyber-attacks but also effectively handles the issues relevant to the modeling uncertainties and measurement noises/errors. The effectiveness of the proposed approach is demonstrated by detailed mathematical analysis and testing it on two well-known IEEE cyber-physical test systems.
ISSN:1735-2827
2383-3890