Itzï (version 17.1): an open-source, distributed GIS model for dynamic flood simulation
Worldwide, floods are acknowledged as one of the most destructive hazards. In human-dominated environments, their negative impacts are ascribed not only to the increase in frequency and intensity of floods but also to a strong feedback between the hydrological cycle and anthropogenic development. In...
Gespeichert in:
Veröffentlicht in: | Geoscientific Model Development 2017-05, Vol.10 (4), p.1835-1847 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Worldwide, floods are acknowledged as one of the most destructive hazards. In human-dominated environments, their negative impacts are ascribed not only to the increase in frequency and intensity of floods but also to a strong feedback between the hydrological cycle and anthropogenic development. In order to advance a more comprehensive understanding of this complex interaction, this paper presents the development of a new open-source tool named Itzï that enables the 2-D numerical modelling of rainfall–runoff processes and surface flows integrated with the open-source geographic information system (GIS) software known as GRASS. Therefore, it takes advantage of the ability given by GIS environments to handle datasets with variations in both temporal and spatial resolutions. Furthermore, the presented numerical tool can handle datasets from different sources with varied spatial resolutions, facilitating the preparation and management of input and forcing data. This ability reduces the preprocessing time usually required by other models. Itzï uses a simplified form of the shallow water equations, the damped partial inertia equation, for the resolution of surface flows, and the Green–Ampt model for the infiltration. The source code is now publicly available online, along with complete documentation. The numerical model is verified against three different tests cases: firstly, a comparison with an analytic solution of the shallow water equations is introduced; secondly, a hypothetical flooding event in an urban area is implemented, where results are compared to those from an established model using a similar approach; and lastly, the reproduction of a real inundation event that occurred in the city of Kingston upon Hull, UK, in June 2007, is presented. The numerical approach proved its ability at reproducing the analytic and synthetic test cases. Moreover, simulation results of the real flood event showed its suitability at identifying areas affected by flooding, which were verified against those recorded after the event by local authorities. |
---|---|
ISSN: | 1991-9603 1991-962X 1991-959X 1991-9603 1991-962X |
DOI: | 10.5194/gmd-10-1835-2017 |