Reliability Analysis of Damaged Beam Spectral Element with Parameter Uncertainties

The paper examines the influence of uncertainty parameters on the wave propagation responses at high frequencies for a damaged beam structure in the structural reliability context. The reliability analyses were performed using the perturbation method, First-Order Reliability Method (FORM), and respo...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Shock and vibration 2015-01, Vol.2015, p.1-12
Hauptverfasser: Machado, M. R., Dos Santos, J. M. C.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The paper examines the influence of uncertainty parameters on the wave propagation responses at high frequencies for a damaged beam structure in the structural reliability context. The reliability analyses were performed using the perturbation method, First-Order Reliability Method (FORM), and response surface method (RSM) which were compared with Monte Carlo simulation (MCS) under the spectral element method environment. The simulated results were performed to investigate the effects of material property and geometric uncertainties on the response at high frequency modes, such as the computational efficiency of reliability methods. For the first time, the spectral element method is used in the context of reliability analysis at medium and high frequency bands applied to damage detection. It has shown the effects of parameters uncertainty on the dynamic beam response due on an impulsive load and the robustness of each method. Numerical examples in a bending vibrating beam with random parameters are performed to verify the computational efficiency of the present study.
ISSN:1070-9622
1875-9203
DOI:10.1155/2015/574846