Ti3Si0.75Al0.25C2 Nanosheets as Promising Anode Material for Li-Ion Batteries

Herein we report that novel two-dimensional (2D) Ti3Si0.75Al0.25C2 (TSAC) nanosheets, obtained by sonically exfoliating their bulk counterpart in alcohol, performs promising electrochemical activities in a reversible lithiation and delithiation procedure. The as-exfoliated 2D TSAC nanosheets show si...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nanomaterials (Basel, Switzerland) Switzerland), 2021-12, Vol.11 (12), p.3449
Hauptverfasser: Xu, Jianguang, Wang, Qiang, Li, Boman, Yao, Wei, He, Meng
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Herein we report that novel two-dimensional (2D) Ti3Si0.75Al0.25C2 (TSAC) nanosheets, obtained by sonically exfoliating their bulk counterpart in alcohol, performs promising electrochemical activities in a reversible lithiation and delithiation procedure. The as-exfoliated 2D TSAC nanosheets show significantly enhanced lithium-ion uptake capability in comparison with their bulk counterpart, with a high capacity of ≈350 mAh g−1 at 200 mA g−1, high cycling stability and excellent rate performance (150 mAh g−1 after 200 cycles at 8000 mA g−1). The enhanced electrochemical performance of TSAC nanosheets is mainly a result of their fast Li-ion transport, large surface area and small charge transfer resistance. The discovery in this work highlights the uniqueness of a family of 2D layered MAX materials, such as Ti3GeC2, Ti3SnC2 and Ti2SC, which will likely be the promising choices as anode materials for lithium-ion batteries (LIBs).
ISSN:2079-4991
2079-4991
DOI:10.3390/nano11123449