Analysis on Mechanical Properties of Recycled Aggregate Concrete Members after Exposure to High Temperatures
In order to study the mechanical properties of recycled aggregate concrete (RAC) specimens after exposure to high temperatures, 120 RAC prism specimens, 57 reinforced recycled aggregate concrete (RRAC) specimens, and 56 steel reinforced recycled aggregate concrete (SRRAC) specimens were designed, in...
Gespeichert in:
Veröffentlicht in: | Applied sciences 2019-05, Vol.9 (10), p.2057 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In order to study the mechanical properties of recycled aggregate concrete (RAC) specimens after exposure to high temperatures, 120 RAC prism specimens, 57 reinforced recycled aggregate concrete (RRAC) specimens, and 56 steel reinforced recycled aggregate concrete (SRRAC) specimens were designed, involving two varying parameters such as recycled coarse aggregate (RCA) replacement percentage and temperature. The performance degradation of RCA materials, RRAC members, and SRRAC members after exposure to high temperatures was analyzed in depth. The research results show that after exposure to high temperatures the surface color of members may change from cinereous to gray-white. Some cracks may appear on surface of members and the mass of members may be lighter. With the increase of the experiencing temperatures, the bearing capacity (compressive, bending, and shearing) of RAC and its members are reduced, but their ductility and energy dissipation capacity have little effect on the change of high temperature. With the increase of the RCA replacement percentage, the mass loss ratio, ultimate bearing capacity, and peak deformation of each RAC and its members increase slightly, and the displacement ductility and energy dissipation capacity of the RRAC members decrease slightly. With the increase in replacement percentage of RCA, mechanical properties of RAC and their members have little effect after exposure to elevated temperatures, and the fluctuation range is within 20%. |
---|---|
ISSN: | 2076-3417 2076-3417 |
DOI: | 10.3390/app9102057 |