Tanshinone IIA attenuates neuroinflammation via inhibiting RAGE/NF-κB signaling pathway in vivo and in vitro
Background Glial activation and neuroinflammation play a crucial role in the pathogenesis and development of Alzheimer’s disease (AD). The receptor for advanced glycation end products (RAGE)-mediated signaling pathway is related to amyloid beta (Aβ)-induced neuroinflammation. This study aimed to inv...
Gespeichert in:
Veröffentlicht in: | Journal of neuroinflammation 2020-10, Vol.17 (1), p.1-17, Article 302 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Background Glial activation and neuroinflammation play a crucial role in the pathogenesis and development of Alzheimer’s disease (AD). The receptor for advanced glycation end products (RAGE)-mediated signaling pathway is related to amyloid beta (Aβ)-induced neuroinflammation. This study aimed to investigate the neuroprotective effects of tanshinone IIA (tan IIA), a natural product isolated from traditional Chinese herbal Salvia miltiorrhiza Bunge, against Aβ-induced neuroinflammation, cognitive impairment, and neurotoxicity as well as the underlying mechanisms in vivo and in vitro. Methods Open-field test, Y-maze test, and Morris water maze test were conducted to assess the cognitive function in APP/PS1 mice. Immunohistochemistry, immunofluorescence, thioflavin S (Th-S) staining, enzyme-linked immunosorbent assay (ELISA), real-time quantitative reverse-transcription polymerase chain reaction (qRT-PCR), and western blotting were performed to explore Aβ deposition, synaptic and neuronal loss, microglial and astrocytic activation, RAGE-dependent signaling, and the production of pro-inflammatory cytokines in APP/PS1 mice and cultured BV2 and U87 cells. Results Tan IIA treatment prevented spatial learning and memory deficits in APP/PS1 mice. Additionally, tan IIA attenuated Aβ accumulation, synapse-associated proteins (Syn and PSD-95) and neuronal loss, as well as peri-plaque microgliosis and astrocytosis in the cortex and hippocampus of APP/PS1 mice. Furthermore, tan IIA significantly suppressed RAGE/nuclear factor-κB (NF-κB) signaling pathway and the production of pro-inflammatory cytokines (TNF-α, IL-6, and IL-1β) in APP/PS1 mice and cultured BV2 and U87 cells. Conclusions Taken together, the present results indicated that tan IIA improves cognitive decline and neuroinflammation partly via inhibiting RAGE/NF-κB signaling pathway in vivo and in vitro. Thus, tan IIA might be a promising therapeutic drug for halting and preventing AD progression. |
---|---|
ISSN: | 1742-2094 1742-2094 |
DOI: | 10.1186/s12974-020-01981-4 |