Duhem Model-Based Hysteresis Identification in Piezo-Actuated Nano-Stage Using Modified Particle Swarm Optimization

This paper presents modeling and parameter identification of the Duhem model to describe the hysteresis in the Piezoelectric actuated nano-stage. First, the parameter identification problem of the Duhem model is modeled into an optimization problem. A modified particle swarm optimization (MPSO) tech...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Micromachines (Basel) 2021-03, Vol.12 (3), p.315
Hauptverfasser: Ahmed, Khubab, Yan, Peng, Li, Su
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This paper presents modeling and parameter identification of the Duhem model to describe the hysteresis in the Piezoelectric actuated nano-stage. First, the parameter identification problem of the Duhem model is modeled into an optimization problem. A modified particle swarm optimization (MPSO) technique, which escapes the problem of local optima in a traditional PSO algorithm, is proposed to identify the parameters of the Duhem model. In particular, a randomness operator is introduced in the optimization process which acts separately on each dimension of the search space, thus improving convergence and model identification properties of PSO. The effectiveness of the proposed MPSO method was demonstrated using different benchmark functions. The proposed MPSO-based identification scheme was used to identify the Duhem model parameters; then, the results were validated using experimental data. The results show that the proposed MPSO method is more effective in optimizing the complex benchmark functions as well as the real-world model identification problems compared to conventional PSO and genetic algorithm (GA).
ISSN:2072-666X
2072-666X
DOI:10.3390/mi12030315