Simulation Study on Combustion Performance of Ammonia-Hydrogen Fuel Engines

Ammonia is a very promising alternative fuel for internal combustion engines, but there are some disadvantages, such as difficulty in ignition and slow combustion rate when ammonia is used alone. Aiming to address the problem of ammonia combustion difficulty, measures are proposed to improve ammonia...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Energies (Basel) 2024-05, Vol.17 (10), p.2337
Hauptverfasser: Zhao, Duanzheng, Gao, Wenzhi, Li, Yuhuai, Fu, Zhen, Hua, Xinyu, Zhang, Yuxuan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Ammonia is a very promising alternative fuel for internal combustion engines, but there are some disadvantages, such as difficulty in ignition and slow combustion rate when ammonia is used alone. Aiming to address the problem of ammonia combustion difficulty, measures are proposed to improve ammonia combustion by blending hydrogen. A one-dimensional turbocharged ammonia-hydrogen engine simulation model was established, and the combustion model was corrected and verified. Using the verified one-dimensional model, the effects of different ratios of hydrogen to ammonia, different rotational speeds and loads on the combustion performance are investigated. The results show that the ignition delay and combustion duration is shortened with the increase of the hydrogen blending ratio. The appropriate amount of hydrogen blending can improve the brake’s thermal efficiency. With the increase in engine speed, increasing the proportion of hydrogen blending is necessary to ensure reliable ignition. In conclusion, the ammonia-hydrogen fuel engine has good combustion performance, but it is necessary to choose the appropriate hydrogen blending ratio according to the engine’s operating conditions and requirements.
ISSN:1996-1073
1996-1073
DOI:10.3390/en17102337