The temporal relationships between white matter hyperintensities, neurodegeneration, amyloid beta, and cognition
Introduction Cognitive decline in Alzheimer's disease is associated with amyloid beta (Aβ) accumulation, neurodegeneration, and cerebral small vessel disease, but the temporal relationships among these factors is not well established. Methods Data included white matter hyperintensity (WMH) load...
Gespeichert in:
Veröffentlicht in: | Alzheimer's & dementia : diagnosis, assessment & disease monitoring assessment & disease monitoring, 2020, Vol.12 (1), p.e12091-n/a |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Introduction
Cognitive decline in Alzheimer's disease is associated with amyloid beta (Aβ) accumulation, neurodegeneration, and cerebral small vessel disease, but the temporal relationships among these factors is not well established.
Methods
Data included white matter hyperintensity (WMH) load, gray matter (GM) atrophy and Alzheimer's Disease Assessment Scale‐Cognitive‐Plus (ADAS13) scores for 720 participants and cerebrospinal fluid amyloid (Aβ1–42) for 461 participants from the Alzheimer's Disease Neuroimaging Initiative. Linear regressions were used to assess the relationships among baseline WMH, GM, and Aβ1–42 to changes in WMH, GM, Aβ1–42, and cognition at 1‐year follow‐up.
Results
Baseline WMHs and Aβ1–42 predicted WMH increase and GM atrophy. Baseline WMHs and Aβ1–42 predicted worsening cognition. Only baseline Aβ1–42 predicted change in Aβ1–42.
Discussion
Baseline WMHs lead to greater future GM atrophy and cognitive decline, suggesting that WM damage precedes neurodegeneration and cognitive decline. Baseline Aβ1–42 predicted WMH increase, suggesting a potential role of amyloid in WM damage. |
---|---|
ISSN: | 2352-8729 2352-8729 |
DOI: | 10.1002/dad2.12091 |