Study on Magnetic Abrasive Finishing Combined with Electrolytic Process–Precision Surface Finishing for SUS 304 Stainless Steel Using Pulse Voltage

In order to further study the Magnetic Abrasive Finishing with Electrolytic (EMAF) Process, we attempted to use rectangular wave pulse voltage for EMAF processing of SUS304 stainless steel, and the finishing characteristics were analyzed based on the experimental results in this paper. The EMAF proc...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of Manufacturing and Materials Processing 2022-02, Vol.6 (1), p.14
Hauptverfasser: Xing, Baijun, Zou, Yanhua, Tojo, Masahisa
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In order to further study the Magnetic Abrasive Finishing with Electrolytic (EMAF) Process, we attempted to use rectangular wave pulse voltage for EMAF processing of SUS304 stainless steel, and the finishing characteristics were analyzed based on the experimental results in this paper. The EMAF process has been studied for years, but the study of Magnetic Abrasive Finishing with the. Pulse Electrolytic (P-EMAF) process has not been published. Therefore, in this study, the finishing characteristics of the P-EMAF process corresponding to different frequencies (1 Hz, 10 Hz, 100 Hz, 1 kHz) and duty ratios (25%, 50%, 75%) are explored. The evaluation of the P-EMAF processing includes the surface roughness (SR) and the amount of material removal (MR); the surface of the workpiece was also observed by an optical microscope before and after processing. After analyzing the experimental results of P-EMAF processing, a set of comparative experiments between P-EMAF processing and MAF processing was carried out. In this study, when the Urms 6 V pulse voltage of rectangular wave with 1 Hz and duty ratio 50% was used, a better processing result could be obtained. The processing efficiency of the P-EMAF process was also higher than that of the MAF process under the same experimental conditions.
ISSN:2504-4494
2504-4494
DOI:10.3390/jmmp6010014