Biomolecular and quantum algorithms for the dominating set problem in arbitrary networks

A dominating set of a graph G = ( V , E ) is a subset U of its vertices V , such that any vertex of G is either in U , or has a neighbor in U . The dominating-set problem is to find a minimum dominating set in G . Dominating sets are of critical importance for various types of networks/graphs, and f...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Scientific reports 2023-03, Vol.13 (1), p.4205-4205, Article 4205
Hauptverfasser: Wong, Renata, Chang, Weng-Long, Chung, Wen-Yu, Vasilakos, Athanasios V.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A dominating set of a graph G = ( V , E ) is a subset U of its vertices V , such that any vertex of G is either in U , or has a neighbor in U . The dominating-set problem is to find a minimum dominating set in G . Dominating sets are of critical importance for various types of networks/graphs, and find therefore potential applications in many fields. Particularly, in the area of communication, dominating sets are prominently used in the efficient organization of large-scale wireless ad hoc and sensor networks. However, the dominating set problem is also a hard optimization problem and thus currently is not efficiently solvable on classical computers. Here, we propose a biomolecular and a quantum algorithm for this problem, where the quantum algorithm provides a quadratic speedup over any classical algorithm. We show that the dominating set problem can be solved in O ( 2 n / 2 ) queries by our proposed quantum algorithm, where n is the number of vertices in G . We also demonstrate that our quantum algorithm is the best known procedure to date for this problem. We confirm the correctness of our algorithm by executing it on IBM Quantum’s qasm simulator and the Brooklyn superconducting quantum device. And lastly, we show that molecular solutions obtained from solving the dominating set problem are represented in terms of a unit vector in a finite-dimensional Hilbert space.
ISSN:2045-2322
2045-2322
DOI:10.1038/s41598-023-30600-4