Indirect State-of-Health Estimation for Lithium-Ion Batteries under Randomized Use

Lithium-ion batteries are widely used in many systems. Because they provide a power source to the whole system, their state-of-health (SOH) is very important for a system’s proper operation. A direct way to estimate the SOH is through the measurement of the battery’s capacity; however, this measurem...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Energies (Basel) 2017-12, Vol.10 (12), p.2012
Hauptverfasser: Yu, Jinsong, Mo, Baohua, Tang, Diyin, Yang, Jie, Wan, Jiuqing, Liu, Jingjing
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Lithium-ion batteries are widely used in many systems. Because they provide a power source to the whole system, their state-of-health (SOH) is very important for a system’s proper operation. A direct way to estimate the SOH is through the measurement of the battery’s capacity; however, this measurement during the battery’s operation is not that easy in practice. Moreover, the battery is always running under randomized loading conditions, which makes the SOH estimation even more difficult. Therefore, this paper proposes an indirect SOH estimation method that relies on indirect health indicators (HIs) that can be measured easily during the battery’s operation. These indicators are extracted from the battery’s voltage and current and the number of cycles the battery has been through, which are far easier to measure than the battery’s capacity. An empirical model based on an elastic net is developed to build the quantitative relationship between the SOH and these indirect HIs, considering the possible multi-collinearity between these HIs. To further improve the accuracy of SOH estimation, we introduce a particle filter to automatically update the model when capacity data are obtained occasionally. We use a real dataset to demonstrate our proposed method, showing quite a good performance of the SOH estimation. The results of the SOH estimation in the experiment are quite satisfactory, which indicates that the method is effective and accurate enough to be used in real practice.
ISSN:1996-1073
1996-1073
DOI:10.3390/en10122012