Representing Small Commercial Building Faults in EnergyPlus, Part II: Model Validation

Automated fault detection and diagnosis (AFDD) tools based on machine-learning algorithms hold promise for lowering cost barriers for AFDD in small commercial buildings; however, access to high-quality training data for such algorithms is often difficult to obtain. To fill the gap in this research a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Buildings (Basel) 2019-12, Vol.9 (12), p.239
Hauptverfasser: Kim, Janghyun, Frank, Stephen, Im, Piljae, Braun, James E., Goldwasser, David, Leach, Matt
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Automated fault detection and diagnosis (AFDD) tools based on machine-learning algorithms hold promise for lowering cost barriers for AFDD in small commercial buildings; however, access to high-quality training data for such algorithms is often difficult to obtain. To fill the gap in this research area, this study covers the development (Part I) and validation (Part II) of fault models that can be used with the building energy modeling software EnergyPlus® and OpenStudio® to generate a cost-effective training data set for developing AFDD algorithms. Part II (this paper) first presents a methodology of validating fault models with OpenStudio and then presents validation results, which are compared against measurements from a reference building. We discuss the results of our experiments with eight different faults in the reference building (a total of 39 different baseline and faulted scenarios), including our methodology for using fault models along with the reference building model to simulate the same faulted scenarios. Then, we present validation of the fault models by comparing results of simulations and experiments either quantitatively or qualitatively.
ISSN:2075-5309
2075-5309
DOI:10.3390/buildings9120239