Modulating the Oxygen Reduction Reaction Performance via Precisely Tuned Reactive Sites in Porphyrin-Based Covalent Organic Frameworks

Covalent organic frameworks (COFs) have emerged as promising electrocatalysts due to their controllable architectures, highly exposed molecular active sites, and ordered structures. In this study, a series of porphyrin-based COFs (TAPP-x-COF) with various transition metals (Co, Ni, Fe) were synthesi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Molecules (Basel, Switzerland) Switzerland), 2023-06, Vol.28 (12), p.4680
Hauptverfasser: Liang, Xiaoqing, Zhao, Zhi, Shi, Ruili, Yang, Liting, Zhao, Bin, Qiao, Huijie, Zhai, Lipeng
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Covalent organic frameworks (COFs) have emerged as promising electrocatalysts due to their controllable architectures, highly exposed molecular active sites, and ordered structures. In this study, a series of porphyrin-based COFs (TAPP-x-COF) with various transition metals (Co, Ni, Fe) were synthesized via a facile post-metallization strategy under solvothermal synthesis. The resulting porphyrin-based COFs showed oxygen reduction reaction (ORR) activity with a trend in Co > Fe > Ni. Among them, TAPP-Co-COF exhibited the best ORR activity ( = 0.66 V and jL = 4.82 mA cm ) in alkaline media, which is comparable to those of Pt/C under the same conditions. Furthermore, TAPP-Co-COF was employed as a cathode in a Zn-air battery, demonstrating a high power density of 103.73 mW cm and robust cycling stability. This work presents a simple method for using COFs as a smart platform to fabricate efficient electrocatalysts.
ISSN:1420-3049
1420-3049
DOI:10.3390/molecules28124680