A Censored Shifted Mixture Distribution Mapping Method to Correct the Bias of Daily IMERG Satellite Precipitation Estimates

Satellite precipitation estimates (SPE) provide useful input for hydrological modeling. However, hydrological modeling is frequently hindered by large bias and errors in SPE, inducing the necessity for bias corrections. Traditional distribution mapping bias correction of daily precipitation commonly...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Remote sensing (Basel, Switzerland) Switzerland), 2019-06, Vol.11 (11), p.1345
Hauptverfasser: Ma, Qiumei, Xiong, Lihua, Xia, Jun, Xiong, Bin, Yang, Han, Xu, Chong-Yu
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Satellite precipitation estimates (SPE) provide useful input for hydrological modeling. However, hydrological modeling is frequently hindered by large bias and errors in SPE, inducing the necessity for bias corrections. Traditional distribution mapping bias correction of daily precipitation commonly uses Bernoulli and gamma distributions to separately model the probability and intensities of precipitation and is insufficient towards extremes. This study developed an improved distribution mapping bias correction method, which established a censored shifted mixture distribution (CSMD) as a transfer function when mapping raw precipitation to the reference data. CSMD coupled the censored shifted statistical distribution to jointly model both the precipitation occurrence probability and intensity with a mixture of gamma and generalized Pareto distributions to enhance extreme-value modeling. The CSMD approach was applied to correct the up-to-date SPE of Integrated Multi-satelliE Retrievals for Global Precipitation Measurement (GPM) with near-real-time “Early” run (IMERG-E) over the Yangtze River basin. To verify the hydrological response of bias-corrected IMERG-E, the streamflow of the Wujiang River basin was simulated using Ge´nie Rural with 6 parameters (GR6J) and Coupled Routing Excess Storage (CREST) models. The results showed that the bias correction using both BerGam (traditional bias correction combining Bernoulli with gamma distributions) and the improved CSMD could reduce the systematic errors of IMERG-E. Furthermore, CSMD outperformed BerGam in correcting overall precipitation (with the median of mean absolute errors of 2.46 mm versus 2.81 mm for CSMD and BerGam respectively, and the median of modified Nash–Sutcliffe efficiency of 0.39 versus 0.29) and especially in extreme values for uniform format and particular attention paid to extremes. In addition, the hydrological effect that CSMD correction exerted on IMERG-E, driving GR6J and CREST rainfall-runoff modeling, outperformed that of the BerGam correction. This study provides a promising integrated distribution mapping framework to correct the biased daily SPE, contributing to more reliable hydrological forecasts by informing accurate precipitation forcing.
ISSN:2072-4292
2072-4292
DOI:10.3390/rs11111345