Massive and massless charge carriers in an epitaxially strained alkali metal quantum well on graphene

We show that Cs intercalated bilayer graphene acts as a substrate for the growth of a strained Cs film hosting quantum well states with high electronic quality. The Cs film grows in an fcc phase with a substantially reduced lattice constant of 4.9 Å corresponding to a compressive strain of 11% compa...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature communications 2020-03, Vol.11 (1), p.1340-1340, Article 1340
Hauptverfasser: Hell, Martin, Ehlen, Niels, Marini, Giovanni, Falke, Yannic, Senkovskiy, Boris V., Herbig, Charlotte, Teichert, Christian, Jolie, Wouter, Michely, Thomas, Avila, Jose, Santo, Giovanni Di, Torre, Diego M. de la, Petaccia, Luca, Profeta, Gianni, Grüneis, Alexander
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We show that Cs intercalated bilayer graphene acts as a substrate for the growth of a strained Cs film hosting quantum well states with high electronic quality. The Cs film grows in an fcc phase with a substantially reduced lattice constant of 4.9 Å corresponding to a compressive strain of 11% compared to bulk Cs. We investigate its electronic structure using angle-resolved photoemission spectroscopy and show the coexistence of massless Dirac and massive Schrödinger charge carriers in two dimensions. Analysis of the electronic self-energy of the massive charge carriers reveals the crystallographic direction in which a two-dimensional Fermi gas is realized. Our work introduces the growth of strained metal quantum wells on intercalated Dirac matter. Cesium atoms that are grown on intercalated bilayer graphene can create an ordered epitaxial film. Here, the authors report that such a strained film can host quantum well states with high electronic quality as characterized through angle-resolved photoemission spectroscopy.
ISSN:2041-1723
2041-1723
DOI:10.1038/s41467-020-15130-1