A lattice theoretical interpretation of generalized deep holes of the Leech lattice vertex operator algebra

We give a lattice theoretical interpretation of generalized deep holes of the Leech lattice VOA $V_\Lambda $ . We show that a generalized deep hole defines a ‘true’ automorphism invariant deep hole of the Leech lattice. We also show that there is a correspondence between the set of isomorphism class...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Forum of mathematics. Sigma 2023-09, Vol.11, Article e86
Hauptverfasser: Lam, Ching Hung, Miyamoto, Masahiko
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We give a lattice theoretical interpretation of generalized deep holes of the Leech lattice VOA $V_\Lambda $ . We show that a generalized deep hole defines a ‘true’ automorphism invariant deep hole of the Leech lattice. We also show that there is a correspondence between the set of isomorphism classes of holomorphic VOA V of central charge $24$ having non-abelian $V_1$ and the set of equivalence classes of pairs $(\tau , \tilde {\beta })$ satisfying certain conditions, where $\tau \in Co.0$ and $\tilde {\beta }$ is a $\tau $ -invariant deep hole of squared length $2$ . It provides a new combinatorial approach towards the classification of holomorphic VOAs of central charge $24$ . In particular, we give an explanation for an observation of G. Höhn, which relates the weight one Lie algebras of holomorphic VOAs of central charge $24$ to certain codewords associated with the glue codes of Niemeier lattices.
ISSN:2050-5094
2050-5094
DOI:10.1017/fms.2023.86