A lattice theoretical interpretation of generalized deep holes of the Leech lattice vertex operator algebra
We give a lattice theoretical interpretation of generalized deep holes of the Leech lattice VOA $V_\Lambda $ . We show that a generalized deep hole defines a ‘true’ automorphism invariant deep hole of the Leech lattice. We also show that there is a correspondence between the set of isomorphism class...
Gespeichert in:
Veröffentlicht in: | Forum of mathematics. Sigma 2023-09, Vol.11, Article e86 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We give a lattice theoretical interpretation of generalized deep holes of the Leech lattice VOA
$V_\Lambda $
. We show that a generalized deep hole defines a ‘true’ automorphism invariant deep hole of the Leech lattice. We also show that there is a correspondence between the set of isomorphism classes of holomorphic VOA V of central charge
$24$
having non-abelian
$V_1$
and the set of equivalence classes of pairs
$(\tau , \tilde {\beta })$
satisfying certain conditions, where
$\tau \in Co.0$
and
$\tilde {\beta }$
is a
$\tau $
-invariant deep hole of squared length
$2$
. It provides a new combinatorial approach towards the classification of holomorphic VOAs of central charge
$24$
. In particular, we give an explanation for an observation of G. Höhn, which relates the weight one Lie algebras of holomorphic VOAs of central charge
$24$
to certain codewords associated with the glue codes of Niemeier lattices. |
---|---|
ISSN: | 2050-5094 2050-5094 |
DOI: | 10.1017/fms.2023.86 |