Quantum Metrology with Strongly Interacting Spin Systems
Quantum metrology is a powerful tool for explorations of fundamental physical phenomena and applications in material science and biochemical analysis. While in principle the sensitivity can be improved by increasing the density of sensing particles, in practice this improvement is severely hindered...
Gespeichert in:
Veröffentlicht in: | Physical review. X 2020-07, Vol.10 (3), p.031003, Article 031003 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Quantum metrology is a powerful tool for explorations of fundamental physical phenomena and applications in material science and biochemical analysis. While in principle the sensitivity can be improved by increasing the density of sensing particles, in practice this improvement is severely hindered by interactions between them. Here, using a dense ensemble of interacting electronic spins in diamond, we demonstrate a novel approach to quantum metrology to surpass such limitations. It is based on a new method of robust quantum control, which allows us to simultaneously suppress the undesired effects associated with spin-spin interactions, disorder, and control imperfections, enabling a fivefold enhancement in coherence time compared to state-of-the-art control sequences. Combined with optimal spin state initialization and readout directions, this allows us to achieve an ac magnetic field sensitivity well beyond the previous limit imposed by interactions, opening a new regime of high-sensitivity solid-state ensemble magnetometers. |
---|---|
ISSN: | 2160-3308 2160-3308 |
DOI: | 10.1103/PhysRevX.10.031003 |