On a class of fractional p(·, ·)−Laplacian problems with sub-supercritical nonlinearities
Abstract This paper is devoted to study a class of nonlocal variable exponent problems involving fractional p(·, ·)-Laplacian operator. Under appropriate conditions, some new results on the existence and nonexistence of solutions are established via variational approach and Pohozaev’s fibering metho...
Gespeichert in:
Veröffentlicht in: | Cubo (Temuco, Chile) Chile), 2023-12, Vol.25 (3), p.387-410 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng ; por |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Abstract This paper is devoted to study a class of nonlocal variable exponent problems involving fractional p(·, ·)-Laplacian operator. Under appropriate conditions, some new results on the existence and nonexistence of solutions are established via variational approach and Pohozaev’s fibering method.n this article, we investigate the Kenmotsu manifold when applied to a Dα-homothetic deformation. Then, given a submanifold in a Dα-homothetically deformed Kenmotsu manifold, we derive the generalized Wintgen inequality. Additionally, we find this inequality for submanifolds such as slant, invariant, and anti-invariant in the same ambient space. |
---|---|
ISSN: | 0719-0646 0719-0646 |
DOI: | 10.56754/0719-0646.2503.387 |