On a class of fractional p(·, ·)−Laplacian problems with sub-supercritical nonlinearities

Abstract This paper is devoted to study a class of nonlocal variable exponent problems involving fractional p(·, ·)-Laplacian operator. Under appropriate conditions, some new results on the existence and nonexistence of solutions are established via variational approach and Pohozaev’s fibering metho...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Cubo (Temuco, Chile) Chile), 2023-12, Vol.25 (3), p.387-410
Hauptverfasser: Azghay, Abdelilah, Massar, Mohammed
Format: Artikel
Sprache:eng ; por
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Abstract This paper is devoted to study a class of nonlocal variable exponent problems involving fractional p(·, ·)-Laplacian operator. Under appropriate conditions, some new results on the existence and nonexistence of solutions are established via variational approach and Pohozaev’s fibering method.n this article, we investigate the Kenmotsu manifold when applied to a Dα-homothetic deformation. Then, given a submanifold in a Dα-homothetically deformed Kenmotsu manifold, we derive the generalized Wintgen inequality. Additionally, we find this inequality for submanifolds such as slant, invariant, and anti-invariant in the same ambient space.
ISSN:0719-0646
0719-0646
DOI:10.56754/0719-0646.2503.387