Existence and symmetry results for a Schrödinger type problem involving the fractional Laplacian
This paper deals with the following class of nonlocal Schrödinger equations(-\Delta)^s u + u = |u|^{p-1}u in \mathbb{R}^N, for s\in (0,1).We prove existence and symmetry results for the solutions $u$ in the fractional Sobolev space H^s(\mathbb{R}^N). Our results are in clear accordance with t...
Gespeichert in:
Veröffentlicht in: | Matematiche 2013-05, Vol.68 (1), p.201-216 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | This paper deals with the following class of nonlocal Schrödinger equations(-\Delta)^s u + u = |u|^{p-1}u in \mathbb{R}^N, for s\in (0,1).We prove existence and symmetry results for the solutions $u$ in the fractional Sobolev space H^s(\mathbb{R}^N). Our results are in clear accordance with those for the classical local counterpart, that is when s=1. |
---|---|
ISSN: | 0373-3505 2037-5298 |
DOI: | 10.4418/2013.68.1.15 |