Existence and symmetry results for a Schrödinger type problem involving the fractional Laplacian

This paper deals with the following class of nonlocal Schrödinger equations(-\Delta)^s u +  u =  |u|^{p-1}u   in  \mathbb{R}^N,  for  s\in (0,1).We prove existence and symmetry results for the solutions $u$ in the fractional Sobolev space H^s(\mathbb{R}^N). Our results are in clear accordance with t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Matematiche 2013-05, Vol.68 (1), p.201-216
Hauptverfasser: Serena Dipierro, Giampiero Palatucci, Enrico Valdinoci
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This paper deals with the following class of nonlocal Schrödinger equations(-\Delta)^s u +  u =  |u|^{p-1}u   in  \mathbb{R}^N,  for  s\in (0,1).We prove existence and symmetry results for the solutions $u$ in the fractional Sobolev space H^s(\mathbb{R}^N). Our results are in clear accordance with those for the classical local counterpart, that is when s=1.
ISSN:0373-3505
2037-5298
DOI:10.4418/2013.68.1.15